[Poster ER1759_6935]

A Study on Application of Membrane Distillation for Recovery of VFA and Water Reuse

*Bo-Ra Shin¹⁾, Min-Kyung Kim²⁾, Hee-Jin Jang³⁾, Seo-Yeon Park⁴⁾, Ji-Soo Lim⁵⁾, and Jin-Woo Cho⁶⁾

^{1~6)} Department of Environment and energy, Sejong University, Seoul 05006, Korea

¹⁾glgl1770@naver.com

Abstract

Volatile fatty acids (VFAs) are a short-chain fatty acids consisting of no more than six carbon atoms. VFAs can be undesirable at times due to potential toxicity and malodor. However, VFAs are also valuable resources convertible to bioenergy and other value-added metabolites. This study investigated the use of membrane distillation (MD) for the recovery and concentration of VFAs from wastewater. Also evaluated was the reusability of the treated wastewater as permeate. The laboratory-scale MD system was operated with synthetic wastewater adjusted to various pH values. The results showed the following removal rates: 81.2–99.7% for acetic acid, 72.7–99.6% for butyric acid, and 67.2-99.3% for valeric acid.

<pre>/Introduction></pre>	🔆 Experim	Experimental conditions				Butyric Acid(BA)			
	Factor	value	No	Condition of feed water	Factor	BA-1	BA-2	BA-3	
Kembrane Distillation, MD					F C _T	2,000 mg/L	2,000 mg/L	2,000 mg/L	
	Temperature		AA-1	Acotic Acid DH 3.1	e nH	3 18	18	6 55	

- Membrane Distillation is driven by the principle that water vaporized by vapor pressure differences caused by temperature differences on both sides of the separator passes through the membrane.
- Due to the highly hydrophobic membrane the surface of the feed side, water cannot pass through the pores of membrane, and water vapor passes through the pores and moves toward the treated water (cold side). cold side) by penetrating pores.

Weighted States Constant States

- **Development of a 2 L/d lab-scale direct** contact (DC)-MD system.
- Investigation of VFAs permeation in DC: MD system
- Measurement of permeability/rejection rate, VFAs fluxes, and incidence of membrane wetting

<Materials and Methods>

Schematic diagram of the MD system

	60 °C				-
(Feed)			AA-2	2,000 mg/L	pH 4.7
Temperature (Permeate)	20 °C		AA-3	(synthetic wastewater)	pH 6.4
			BA-1	Butyric Acid	pH 3.18
Concentration of Feed Solution	2,000 mg/L		BA-2	2,000 mg/L (synthetic wastewater) Valeric Acid 2,000 mg/L (synthetic wastewater)	pH 4.8
			BA-3		pH 6.55
Effective Area Cross Flow Velocity	28.7 cm ² / 0.09 m/s		VA-1		pH 3.27
			VA-2		pH 4.84
			VA-3		pH 6.4

 \succ C_T = [HAc] +[Ac⁻]

- $\alpha_0 = [HAc] / [HAc] + [Ac^-], \alpha_1 = [Ac^-] / [HAc] + [Ac^-]$
- > For each component, Experiment 1 set pH with $\alpha_0 = 0.97$, Experiment 2 set pH with α_0 =0.5, and Experiment 3 set pH with α₀ =0.03.

<Results and Discussion>

Rejection rate of VFAs at various pH

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

	Factor	VA-1	VA-2	VA-3
F	C _T	2,000 mg/L	2,000 mg/L	2,000 mg/L
е	рН	3.27	4.84	6.4
e d	$\boldsymbol{\alpha_0}$, $\boldsymbol{\alpha}_1$	$\alpha_0 = 0.97 / \alpha_1 = 0.03$	$\alpha_0 = 0.5 / \alpha_1 = 0.5$	$\alpha_0 = 0.03 / \alpha_1 = 0.97$
F	Rejection rate [%]	67.2	87	99.3
Flux		11.5 LMH	10.7 LMH	11.7 LMH
Сс	onductivity	150 100 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0	1400 1200 1000 800 400 200 200 400 200 400 0 200 400 0 200 400 0 1000 10	2500 2000 E 5 1500 500 0 200 400 600 800 1000 1200 1400 TIME[min]
		TIME[min]		

Liquid Entry Pressure(LEP)

- $-2 B \gamma_L \cos \theta$ | FP = r_{max}
- · LEP : the liquid entry pressure of
 - pure water [Pa]
- B : a dimensionless geometrical factor
- $\gamma_{\rm I}$: the liquid surface tension [N m⁻¹]
- $\cdot \theta$: the contact angel
- · r_{max} : maximal pore radius [m]

Discussion

	No.	LEP (bar)
2	Virgin	2.2
	AA-1	2.2
	AA-2	2.2
	AA-3	2.2
	BA-1	2.2
	BA-2	2.2
	BA-3	2.2
- CE	VA-1	2.2
	VA-2	2.2
	VA-3	2.2

Membrane Specification

Parameters	Properties
Manufacturer	Millipore
Material	PVDF
Pore size (µm)	0.22
Porosity (%)	75
Thickness (µm)	125
Effective area (m ²)	2.1×10 ⁻³
Contact angle(°)	120.1

pH of Feed Solution Acetic Acid(AA)

	Factor	AA-1	AA-2	AA-3	
F	C _T	2,000 mg/L	2,000 mg/L	2,000 mg/L	
е	рΗ	3.1	4.7	6.4	
e d	$\boldsymbol{\alpha_0}$, $\boldsymbol{\alpha}_1$	$\alpha_0 = 0.97 / \alpha_1 = 0.03$	$\alpha_0 = 0.5 / \alpha_1 = 0.5$	$\alpha_0 = 0.03 / \alpha_1 = 0.97$	
Rejection rate [%]		81.2	88.9	99.7	
Flux		12.5 LMH	12.2 LMH	12.3LMH	
Conductivity		250 (III) 200 150 50 0 200 400 600 800 1000 1200 1400 TIMETerial	2400 2000 1800 1400 1200 1200 1000 800 600 400 200 0 200 400 200 0 200 400 600 0 200 400 600 0 0 200 1200 1200 1200 1200 1200	5000 4500 4000 500 5000 5	
_		TIME[min]	TIME[min]	TIME[min]	

- > As a result of operating the DC-MD system using synthetic wastewater of 2,000 mg/L acetic acid pH 3.1, 4.7, and 6.4, the removal rates of acetic acid were 81.2, 88.9, and 99.7%.
- > As a result of operating the DC-MD system using synthetic wastewater of 2,000 mg/L butyric acid pH 3.18, 4.8, and 6.55, the removal rates of butyric acid were 72.7, 87.4, 99.6%.
- > As a result of operating the DC-MD system using synthetic wastewater of 2,000 mg/L valeric acid pH 3.27, 4.84, and 6.4, the removal rates of valeric acid were 67.2, 87, 99.3%.
- > Although the feed water is acidic, this experiment confirms that the LEP values are the same as the LEP of the Virgin membrane(2.2 bar) for all experimental conditions.

Conclusions

- > Increases in pH values improve the rejection rates of the following VFAs: 81.2-99.7%, acetic acid; 72.7-99.6%, butyric acid; and 67.2-99.3%, valeric acid.
- At a constant concentration of feed water(C_t), α_0 depends on pH, and the removal rate of VFAs depends on the value of Ct* α_0 . \succ
- > At pH 3.1, 4.7 and 6.4 acetic acid solutions, flux was observed at 12.5, 12.2 and 12.3 LMH, and at pH 3.18, 4.8, 6.55 butyric acid solutions at 12, 11.2 and 10.8 LMH. And at pH 3.27, 4.84, and 6.4 valeric acid solutions, flux is observed as 11.5, 10.7, and 11.7 LMH.

References

- 1. Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018), "Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges", Bioresource technology, 268, 773-786.
- 2. Khayet, M., & Matsuura, T. (2011), "Membrane distillation: principles and applications".
- 3. Tamis, J., Joosse, B. M., Loosdrecht, M. V., & Kleerebezem, R. (2015), "High-rate volatile fatty acid (VFA) production by a granular sludge process at low pH", Biotechnology and bioengineering, 112(11), 2248-2255.

Acknowledgement

